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ABSTRACT 

In recent years a number of analyses and 
simulations have been published that estimate the 
effect of using a probe with higher order azimuthal 
modes with standard probe corrected spherical 
transformation software.  In the event the probe has 
higher order modes, errors will be present within the 
calculated antenna under test (AUT) spherical mode 
coefficients and the resulting asymptotic far-field 
parameters [1, 2, 3, 4].  Within those studies, a 
computational electromagnetic (CEM) simulation tool 
was developed to calculate the output response for an 
arbitrary AUT/probe combination where the probe 
could be placed at arbitrary locations on the 
measurement sphere ultimately allowing complete 
near-field acquisitions to be simulated.  The planar 
transmission equation was used to calculate the probe 
response using the plane wave spectra for actual AUTs 
and probes derived from either planar or spherical 
measurements.  The planar transmission formula was 
utilised as, unlike the spherical analogue, there is no 
limitation on the characteristics of the AUT or probe 
thereby enabling a powerful, entirely general, model 
to be constructed.  This paper further extends this 
model to enable other measurement configurations 
and errors to be considered including probe 
positioning errors which can result in ideal first order 
probes exhibiting higher order azimuthal mode 
structures.  The results of these additional simulations 
are presented and discussed. 

Keywords: near-field, antenna measurements, near-field 
probe, spherical alignment, spherical mode analysis. 

1.0 Introduction 

This paper extends previous studies in which the effect of 
the presences of higher order azimuthal probe spherical 
mode coefficients when the classical spherical numerical 
software which uses mode orthogonality to solve for the 
spherical mode coefficients (SMC) of the antenna under 
test (AUT) is employed [1, 2, 3, 4].  In this commonly 
used spherical near-field to far-field transform approach, 
the probe is assumed to have only modes for which µ = 

±1 with all higher order azimuthal spherical mode 
coefficients being assumed to be identically zero.  In the 
event the probe has non-zero higher order azimuthal 
modes, as is often the case in practice, errors will be 
present within the calculated AUT spherical coefficients 
and the corresponding asymptotic far-field data.  In those 
previous studies, a novel computational electromagnetic 
(CEM) simulation was developed to calculate the output 
response for an arbitrary AUT/probe combination where 
the probe could be placed at arbitrary locations in the 
near-field.  The planar transmission equation was used to 
calculate the probe response using the plane wave 
spectrum method for actual AUTs and probes derived 
from either planar or spherical near-field measurements.  
The planar transmission formula was utilized as there is 
no inherent limitation on the characteristics of the AUT or 
probe thereby allowing a very general model to be 
constructed.  The positions and orientations of the AUT 
and probe were specified using a combination of 
isometric rotations of the antenna’s spectra and the x, y, z 
position of the probe used in the transmission equation.  
The simulation was carried out for rectangular open 
ended waveguide (OEWG) probes using all of the higher 
order modes and also for the same probe where only the µ 
= ±1 modes were present to calculate the probe patterns. 

During those simulations the far-field difference level was 
computed and found to be primarily in the main beam 
region and at a level 40 to 60 dB below main beam peak 
for measurement radii of one and four times the 
maximum radial extent (MRE) respectively.  Thus, the 
initial conclusion was that the effect of the higher order 
modes on typical measurements using OEWG probes 
would be smaller than other commonly encountered 
measurement errors and therefore have little practical 
effect on the far-field results.  The results of those 
simulations were presented and guidelines developed to 
aid in the choice of spherical near-field probes and 
measurement radii for typical antennas [3, 4].  However, 
within those simulations it was assumed that the spherical 
system being modelled was perfectly aligned with the 
probes being rotated coaxially about the longitudinal axis 
of the waveguide section.  It is well known from standard 
spherical near-field sampling theory that displacing a 



source away from the measurement origin has the effect 
of exciting progressively higher order modes [5].  Thus, it 
is possible, as a consequence of imperfections in the 
alignment, or characterization, of the near-field probe, 
that even a “perfect” first order probe can exhibit 
significant non-first order behavior.  This mechanical 
configuration is illustrated below in Figure 1 where the 
observer is looking into the aperture of an OEWG probe 
which is shown in two , i.e. polarization, positions (0 
and 90) and has been translated in the x- and y-axes by 
an amount x and y respectively. 

 

Figure 1: Schematic of spherical measurement system 
showing probe axis alignment error.  Here probe translation 
from  = 0 position to  = 90 position is shown. 

It can be shown that the general form of the far-field 
pattern of a rotational symmetrical first order probe 
satisfies the equation [6], 
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Where for the  = 1 rotational symmetry to hold it is 
also necessary for the probe to be symmetrical in , thus 
only the conventional, or first, sphere data is used to 
generate the probe patterns, or alternatively only the 
alternate, or second, sphere is used [7].  Thus, the 
complete pattern can be determined from the far-field 
cardinal cuts.  From the shifting property of the Fourier 
transform, it is possible to show that the pattern of a 
translated antenna can be obtained by applying a 
differential phase change [8].  Thus, a probe that has been 
translated in the x- and/or y-axis can be obtained from a 
nominally aligned probe through, 

      yvxujk
t eKK  0,,   (2) 

Here, k0 is the free-space propagation constant, and u & v 
are the conventional Cartesian direction cosines that are 
related to the polar spherical angles through, u = 
sincos, v = sinsin.  To illustrate the effect that this 
has on the corresponding probe SMCs, Figure 2 presents 
the s = 1, i.e. transverse electric (TE), SMCs for a 

perfectly aligned first order probe.  In this case, the first 
order probe corresponds to an open ended rectangular 
waveguide (WR90) probe with all the higher order 
azimuthal modes having first been filtered out by taking 
the far-field cardinal pattern cuts and reconstructing the 
complete far-field pattern using equation (1).  Here, the 
SMC are presented in the form of a false colour 
checkerboard plot of the amplitude of the SMCs.  The 
white space denotes mode coefficients for combinations 
of M and N that do not have a physical significance.  
Conversely Figure 3 presents the same data in an 
alternative form.  Here, the amplitude mode spectrum 
corresponding to s = 1, M = 0, 1, 2, 3, 4, and 5 SMCs, are 
plotted as a function of the N index.  From inspection of 
these plots, it is evident that for a perfectly aligned first 
order probe, the SMC amplitudes are zero for all modes 
where M  |1| thereby providing verification of the correct 
application of equation (1).  Figure 4 contains an 
equivalent false-colour plot for the case where the probe 
has been displaced from the origin by 0.1 wavelengths in 
the x-axis, and Figure 6 contains an equivalent plot only 
here the displacement has been increased to 0.2 
wavelengths. 

 
0 5 10 15 20 25 30

-70

-60

-50

-40

-30

-20

-10

0

N

M
od

e 
A

m
pl

itu
de

 (
dB

)

S = 1

 

 

M=0

M=1

M=2

M=3

M=4

 
Figure 2: False colour plot of 

SMCs of correctly aligned 
first-order probe 

Figure 3: Plot of SMCs of 
correctly aligned first-order 

probe 
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Figure 4: False colour plot of 

SMCs of first order probe 
offset by 0.1 in x-axis 

Figure 5: Plot of SMCs of 
SMCs of first order probe 

offset by 0.1 in x-axis. 
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Figure 6: False colour plot of 

SMCs of first order probe 
offset by 0.2 in x-axis 

Figure 7: SMCs of first 
order probe offset by 0.2 in 

x-axis. 



Figures 5 and 7 contain mode plots that are equivalent to 
those shown within Figure 3 which clearly illustrate the 
increase in power that is contained within the higher order 
azimuthal mode coefficients that results from increasingly 
large tangential probe translations.  It is worth reiterating 
at this point that all of these mode spectra were obtained 
from the same rotationally symmetrical first order probe 
with a mathematical displacement being applied using 
equation (2).  Here, the SMCs were computed using 
standard spherical near-field processing [1, 6].  These 
plots illustrate the general behavior which is that 
progressively higher order azimuthal modes are excited as 
the probe offset in the x- or y-axes increases with this 
being true irrespective of the type or design of probe 
being considered.  Displacement in the z-axis results in 
higher order polar modes being excited however this does 
not invalidate the  = 1 constraint. 

2.0 Overview of Simulation Technique 

The novel plane wave spectrum based simulation 
technique has been described in detail in previous papers 
[1, 2] and will only be summarized here.  Previously 
measured spherical near-field data for both the AUT and a 
probe is used to calculate the far-field patterns of both 
antennas over a full sphere.  The AUT far-field pattern is 
then rotated mathematically about the z-axis to simulate a 
-rotation and about the y-axis to simulate a θ-rotation.  
The transmitting plane wave spectrum over the forward 
hemisphere on a k-space grid is then derived from the 
rotated pattern.  This plane-wave spectrum represents the 
AUT rotated in (,) as it is in a conventional spherical 
near-field measurement.  Specifying a z-offset when 
calculating the AUT far-field pattern allows the radius of 
the simulated measurement to be controlled.  So as to 
generalize the simulation as far as possible, the simulated 
measurement radius was specified as a multiple of the 
maximum radial extent (MRE) of the AUT thereby 
allowing generalization of the results to other probe/AUT 
combinations.  In this case a high gain x-band slotted 
waveguide array antenna was used, as shown in Figure 8, 
which had a conceptual MRE of 18” (0.46 m). 

 
Figure 8: x-band slotted waveguide planar array antenna 
used as the AUT within the SNF simulations. 

The plane wave spectrum of the probe is also rotated 
about the z-axis of the probe by the angles 

0 90and   to simulate the two probe rotations of a 

standard spherical near-field measurement and its 
receiving plane wave spectrum calculated on the same k-
space grid as was used to tabulate the AUT.  The AUT 
and probe plane wave spectra are combined using the 
standard transmission formula, which corresponds to 
convolving the two pattern functions in the near-field, and 
then integrated to compute the simulated measurement for 
a single (r, , , ) point.  That is to say, an inverse two-
dimensional Fourier transform is performed to reconstruct 
the radiated near-fields.  The calculation of a receiving 
plane-wave spectrum for the OEWG probe is repeated but 
in this case, the offset probe pattern is used and the 
convolution/integration is repeated.  This provides two 
simulated measurement points represent, respectively, a 
spherical near-field sample using a first order probe, and a 
higher order x- or y-axis translated probe with otherwise 
identical patterns and polarization properties.  The 
simulation technique as implemented omits reactive fields 
as non-visible spectra are filtered out prior to integrating.  
However, actual spherical near-field measurements are 
also taken outside of this region of space and this 
limitation is therefore of no practical concern.  Also, 
multiple reflections between the probe and the AUT are 
omitted from the simulation however these too are 
omitted from all standard near-field theories. 

A more efficient processing technique was introduced 
within an earlier paper [4] which roughly halved the 
simulation times, and in this study that gives additional 
insight into the effect of the higher order modes by 
modeling a general probe as the sum of an ideal probe 
with only the first order modes and a fictitious difference 
probe that contains only the higher order modes.  That is 
to say, 
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The far-field pattern and therefore the receiving plane 
wave spectrum for the difference probe can be calculated 
by the spherical software using the measured probe near-
field data while setting the first order modes to zero when 
the far-field is calculated.  The error in the near-field data 
due to the higher order modes can be calculated directly 
in a single step by using only the difference probe 
spectrum in the transmission equation.  The far-field error 
can then be calculated by processing this difference probe 
near-field data using the standard spherical software. 



3.0 Summary of Results 

Utilizing the concept of a difference probe, the  and  
polarized difference spectra for the case where the probe 

has been offset in x by 0.1 are shown in Figures 9 & 10. 

  
Figure 9: -component 

pattern for OEWG probe 

with 0.10  offset in x. 

Figure 10: -component 

pattern for OEWG probe 

with 0.10  offset in x. 

Here, the amplitudes are plotted relative to the peak of the 
first order probe pattern.  The error in the simulated near-
field is given by the convolution of the difference probe 
spectrum and the AUT transmitting spectrum which are 
shown in Figures 11 and 12. 

  
Figure 11: -component far-

field pattern for slotted array 
AUT. 

Figure 12: -component 

far-field pattern for slotted 
array AUT. 

The amplitude of the complex difference is shown in 
Figures 13 and 14 where the complex difference is 
defined as follows, 

  2110complex E-Elog20  (4) 

Here, E1 and E2 denote the spherical field components 
being compared.  This definition of adjacency takes into 
account phase differences that are crucial when 
examining near-field data is subsequently transformed to 
the far-field. 

 
Figure 13: Difference 
amplitude peak = -27.5 dB) 
near-field pattern for 

Figure 14: Difference 
amplitude (peak = -21.6 dB) 
near-field pattern for 

x=0.1 and measurement 

radius = 4MRE. 

x=0.2 and measurement 

radius = 4MRE. 
In Figure 15, the near-field errors are plotted for specific 

(,,) points as a function of measurement radius.  This 

type of plot illustrates the character of the near-field error 
versus measurement radius where the specific points here 

are near the peaks ( = 10 and 5) and nulls ( = 0) of 

the error patterns at a fixed distance shown in Figures 13 
and 14. 

 

Figure 15:  Near-field complex error difference versus 
measurement radius. 

Since the AUT pattern is focused with the highest 

amplitudes near  = 0 and the difference probe has a null 

in this region, c.f. Figures 9 and 10 above, the error 
caused by the higher order modes is very low in the AUT 
boresight direction.  The near-field error pattern is 
therefore localized to a region slightly off boresight where 
the sidelobes of the AUT couple with the peak of the 
difference probe pattern.  Clearly, the near-field data can 
be transformed to the far-field using standard spherical 
near-field processing.  Figure 16 below contains a 
comparison of the far-field antenna pattern as obtained 
using an ideally orientated probe, which are denoted with 
red contours, and an identical probe that has been offset 
by 0.1 in the x-axis, which are denoted by black 
contours.  Here, the contours are plotted -50 -40 -30 -20 -
10 -5 -3 -2 -1 dB levels below the peak of the pattern. 
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Figure 16: Red denotes reference far-field pattern, black 
denotes 0.1 x-axis offset probe at a measurement radius of 
4MRE. 
As the degree of agreement attained between the 
respective far-field patterns is very encouraging, 
equivalent difference plots can again be produced to 
quantify the behavior and similarities.  In the far-field, 
conventional amplitude difference plots can be employed 
as the phase comparison is far less crucial in this region.  
Again, the differences are most significant in the main 
beam region and fall off to very low levels elsewhere with 
the degree of agreement improving as the measurement 
radii increases. 

  
Figure 16: amplitude 
difference far-field pattern 

for x = 0.1 and 

measurement radius = 
4MRE. 

Figure 17: amplitude 
difference far-field pattern 

for x = 0.2 and 

measurement radius = 
4MRE. 

5.0 Summary and Conclusions 
The results presented above are broadly similar to those 
reported within previous studies that focused on the use of 
OEWG probes with standard SNF processing.  At the 
minimum measurement radius (2MRE) with a 0.1  x-
axis offset, there are points in the near-field where the 
complex amplitude errors due to the higher order modes 
are only 22 dB below the correct values and this is high 
enough that it could be observed in an actual 
measurement.  However, and as has been the case with 
other higher order azimuthal mode related errors, the 
complex amplitude differences reduce as the radius 
increases.  Here, the complex difference reduced to 27 dB 
below the correct values when the radius doubled to 
4MRE.  The effect on the far-field pattern is primarily 

on the main beam region and the sidelobes have very 
small errors.  The peak main beam errors for the 2MRE 
simulations with 0.1 x-axis peak positional error are on 
the order of 34 dB below the main beam peak which may 
not be acceptable for high accuracy measurements.  
However, this peak level can be reduced by using 
measurement radii greater than this and at 4MRE the 
error level reduced to 40 dB.  Furthermore, the graphical 
results presented above can be used to determine the 
required distance for a desired accuracy level.  The effect 
of the misalignment was found to decrease with distance 
which agreed with practical experience and is an 
additional indication of reliability of the simulations.  
Furthermore, by comparing and contrasting the results as 
summarized above, with those of the previous studies [1, 
2, 3, 4] it is apparent that excitation of higher order 
azimuthal SMC as a result of imperfections within probe 
alignment are potentially a larger component within the 
facility level uncertainty budget than using a rectangular 
OEWG probe in place of a true first order rotationally 
symmetrical probe. 

The use of the planar transmission equation and plane 
wave spectrum technique to simulate near-field data on a 
spherical surface, and potentially other surfaces, has been 
demonstrated and shown to be a powerful tool for 
analysing near-field measurements.  Independent 
algorithms using different software were developed by the 
two authors and the very close agreement attained 
between in the results substantiates the method and the 
implementations.  Again, the complex differences in the 
near-field were found to provide a good predictor of the 
far-field differences, thus simulations at representative 
angles can be used to analyze other AUT/probe/frequency 
combinations without the need to produce complete full 
near-field simulations and compare the transformed far-
fields with the difference levels being generally 
insensitive to the AUT characteristics. 
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